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Chapter2:  DERIVATIVES 

 

 

(I) Derivative of a function at a point 

 

Definition:  The derivative of a function y = f (x) at a point a, denoted by f ′(a), is 
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       Provided that the limit exists. 

 

Remark :  The value of this limit ( )f a , if it exists, represents: 

1) the slope of the line tangent to the curve y = f (x) at the point x = a  . Hence, 

the equation of tangent line for this curve at a point a is given by 

( )
( )

y f a
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2) the instantaneous rate of change, with respect to x, of the function f at a.  

Therefore, a positive f ′(a) means that the function f is increasing at a, while 

a negative f ′(a) means that f is decreasing at a.  If f ′(a) = 0, then f is neither 

increasing nor decreasing at a. 

 

 

Example:     Let  f (t) = t5 + 6t ,  find f ′(a) using the definition of differentiation.  . 

 

Solution:  Since Let  f (t) = t5 + 6t, then we have 
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Example:   Let  54)( 2  xxf  , find f ′(a) using the definition of differentiation.     

Write an equation of the line tangent to y = f (x) when a = 1. 

 

Solution:   
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At a = 1,  the point on the curve, (a, f (a)) is (1, 3), and the slope of the tangent line 

is  
3

4
)1( f .  Hence, the equation of tangent line becomes   
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Solution:    
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The Derivative as a function 

 

The derivative of a function of  x is another function of  x. Up until this point, 

derivatives of functions were calculated at some arbitrary, but fixed, point a.  

Notice from the previous examples that the expressions obtained can be evaluated 

at different values of a.  Indeed, we can replace the number a in a derivative by the 

variable x in the expression, and represent the derivative as a function of x. 

 

Definition:  The derivative of a function f  is the function f ′, defined by 
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for all x for which this limit exists. In this case,  ( )f x is called the first derivative 

of  f (x)  

 

Remark:   
1) The domain of  f ′ is the set of all values from the domain of  f  where the 

above limit exists.  The process of finding the derivative of  f  is called 

differentiation of  f.  Geometrically, the value of  f ′(x) represents the slope of 

the line tangent to the curve  

y = f (x) at the point (x, f (x)).    

2) If a is a number in the domain of  f  where the derivative exists, then  f is said 

to be differentiable at a.   

3) A function is said to be differentiable on an open interval (a, b) if it is 

differentiable at every point in the interval.  For closed intervals, the limit 

definition of differentiability at an endpoint is replaced by the appropriate 

one-sided limit. 

 

Notations:  Suppose y = f (x), then its derivative with respect to x, is commonly 

denoted by   

                   f ′(x) = y′ = ( )
dy df d

f x
dx dx dx

  D f (x) = Dx f (x).  

 The symbols 
dx

d
 and D are called differential operators.   

 

Example:  Differentiate  f (x) = x3 − 7x + 4, using the definition of differentiation.   
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Example:   Show that   f (x) = │x│ is not differentiable at  x = 0   : 

 

Solution:   Let  x = 0 and use the limit definition of derivative, 
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Since the one-sided limits are not equal, the limit does not exist, so 

f (x) = │x│ is not differentiable at 0. 

 

Theorem:  If f  is differentiable at a, then f  is continuous at a. 

 

Remark :  The converse is not always true.  A function can be continuous at a, but 

not differentiable at a.  For instance, see f (x) = │x│, at  x = 0.  Hence, if f is 

differentiable on an interval, then it is continuous on the same interval as wel 

 

 

(III)  Derivatives of  some important real valued functions: 
 

(1)   Basic Differentiation Formulas 

Here, we give the basic differentiation formulas  which are the more important 

differentiation rules and will allow us  to differentiate a wider variety of functions.    

Suppose f  and g are differentiable functions, c is any real number, then  
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6) Chain rule: if y=g(t) and  t=g(x), then 

7)                  

( ) ( ) ( ( )) ( )
dy dy dt

f t g x f g x g x
dx dt dx

      

  

 (2)   Derivatives of power functions 

 

The Power Rule:  For any real number n, 
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Using the chain rule, we have  

1([ ( )] )n nd du
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  Example:  Differentiate  y = 2t3 − t π + t −2 + 9 

 

Solution:    y′ = 2(t3)′ − (t π)′ + (t −2)′ + (9)′  

                       = 2(3t2) − πt π −1 + (− 2t −3) + 0 

                       = 6t2 − πt π −1 − 2t −3  

 

 

Example:  Differentiate  
34

2
5)( t

t
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Solution:   This would be easier to do if we first rewrite s(t) in terms of powers of x. 
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Example:  Differentiate  
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Solution:   Using the properties of differentiation, we have   
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Example:    Differentiate  2
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Solution:    The easiest way to do this is to rewrite g(x) as 
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Example:    Differentiate  )25( 2  xxxy  

 

 Solution:  Simplify first:  y = x5/2 − 5x3/2 + 2x1/2. 
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    The longer way to do this is by using the product rule: 
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Example:  Suppose the curves  y1 = x2 + ax + b  and  y2 = cx − x2  have a common 

tangent line at the point (1, 0).  Find the constants a, b, and c.   

 

Solution:        Both curves have a common point at (1, 0).  Therefore, when x = 1, 

both y-values are 0.  Hence,  0 = 1 + a + b and  0 = c − 1.    Hence c = 1 and  a 

+ b = −1. 

 

Sharing a tangent line at (1, 0) means that both curves have the same instantaneous 

rate of change when x = 1, i.e.,   y1′(1) = y2′(1). 

 

y1′ = 2x + a     y1′(1) = a + 2 

y2′ = c − 2x     y2′(1) = c − 2 

Substitute in c = 1 and equate y1′(1) = y2′(1): 

 y1′(1) = a + 2 = y2′(1) = c − 2 = −1 

Therefore, a = −3, b = 2, and c = 1. 

 

(3)   Derivatives of Trigonometric functions: 

 

  Let xy sin . Using the definition of differentiation     

                         
h

xhx
Limy
h

sin)sin(

0





 

 Since,    
2

cos
2

sin2sinsin
baba

ba


 ,  we obtain 

                          
h

hxh
Limy
h

)2/cos()2/sin(2

0





 

                           
sin( / 2)

sin cos( ) cos
0 2 / 2

d h h
x Lim x x

hdx h
   


 

 

If   uy sin  )(xgu   , we have  
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Example:  Evaluate y   for  each of the following functions: 

                 )32sin()1 xy                 xy 3sin)2   

                 )12(tan)3 4  xy             xxy 3sec)4 23  

                )73(sec)5 4 xxy             
5)sintan2()6  xxy                    

   

 

Solution: 

 )32cos(3)1 xy   

 xxy cossin3)2 2  

 )12(sec2)12(tan4)3 23  xxy  

                             )12(sec)12(tan8 23  xx  
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2

3 3)3sec()3sec(3sec2)4 xxx
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d
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23 )3sec(33tan3sec33sec2 xxxxxx    

                              )13tan2(3sec3 22  xxxx  

  )73sec()73(sec28)73(sec)5 34 xxxxy   
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                                                     )73tan( x  

 )73tan()73(sec28)73(sec 44 xxxx   
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(4) Derivatives of Exponential and Logarithm Functions  

First, we deal with the derivatives of logarithm function. Let      
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If uy ln  and )(xgu  , we get by using the chain rule:  
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To determine the derivative rule for xy alog , we use the relation 
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Example:  Evaluate y   for  each of the following functions: 
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            Taking natural logarithm function ln for both sides of this equation and use 

its properties, we get  
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     Now, we deal with the derivatives of exponential  function: 

         Let   
xey                               yx ln  

                                        

1

x

y

y

y y e


 

  
 

If 
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Similarly, one can show that  
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Example:  Evaluate y   for  each of the following functions: 
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(a) In this case let’s first rewrite the function in a form that will be a little easier to 

deal with. 
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(b) We’ll not put as many words into this example, but we’re still going to be 

careful with this  

      derivative so make sure you can follow each of the steps here. 
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(5)   Derivatives of inverse trigonometric functions: 

 

First, we find the derivative of  
1arcsin : siny x x   
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If uy 1sin   and )(xgu  ,  we get by using the chain rule:  
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In a similar fashion, develop the formulas for the  derivatives of the other 5 inverse 

trig functions: 
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Remark: 

 
 

 

Example:   Differentiate each of the following functions: 

  

  )(tancos)1 1 xy           
41 )(tan)2 xy            )3tan5ln()3 1 xy    

 

Solution:
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Remark:   Let ( ), ( )x t y t    be a parametric curve, then 
dx

dy
 is given by  
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Example:  Evaluate 
dx

dy
 for  the following  parametric function at the point 

)5,9(P : 

3 1, 2 1x t y t     

 

Solution:
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One can show that, at the point  𝑃(9,5), we get  𝑡 = 2.  Consequently,  
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Example:  Evaluate 
dx

dy
 for  the following  parametric function  

21 1,sin txty  
 

 Solution:
    

 Differentiating each 𝑦 and 𝑥 with respect to 𝑡, we obtain 
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 (5) Derivatives of hyperbolic functions and therirs  inverse  

      

 The set of functions that we’re going to be looking in this section at are the 

hyperbolic  functions.  In many physical situations combinations of  &x xe e 
arise 

fairly often.  Because of  this these combinations are given names.  There are six 

hyperbolic functions and they are defined  as follows.  

 xx eex 
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Because the hyperbolic functions are defined in terms of exponential,  then using 

the derivative rule of exponential function, we have    
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dx dx
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Now, we are deriving  the derivatives rules for the inverse hyperbolic functions: 
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Similarly, we obtain the following formulas:   
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Here are a couple of quick derivatives using hyperbolic functions. 

 
 

Example:   Differentiate each of the following functions: 
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)sinh(tan)1 2 xy                    )sec(lnsec)2 xhy            

 

Solution:  

  xxxy 22 sectan2)cosh(tan)1   

  
x

xx
xxhy
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tansec
)sectanh(ln)sec(lnsec)2   

Example:   Differentiate each of the following functions: 

 
11) sinh (tan )y x    

1 2tanh2) (sec ) xy x
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2) taking ln for both sides, weget
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[tanh ln(sec ) 2 ]
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To this point we’ve done quite a few derivatives, but they have all been derivatives 

of functions  

of the form  y=f(x).  Unfortunately not all the functions that we’re going to look at 

will fall into this form. 

 

Example:   Differentiate each of the following functions: 
1 1 1( ) , ln sinh (tan ) ( ) tan tanta y e t x b x y y x      
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Solution 

(a)  Here is the differentiation of each side for this function. 
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(c) Here is the derivative of this equation. 

 

 
(5)   Higher Order Derivatives: 

Here we will introduce the idea of higher order derivatives.   

Definition:   Let 𝑦 = 𝑓(𝑥) be differentiable function, then 
  

( )
dy

y f x
dx

    is 

called the first derivative of  ( )f x , then we define the following 
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2

2

3

3

4
(4)

4

( ) (

( ) : : the second derivative of ( )

( ) : ( ) : the third derivative of ( )

( ) ( ) : ( ) : the fourth derivative of ( )

( ) :
n

n n

n

d f d df
f x f x

dx dx dx

d f d
f x f x f x

dx dx

d f d
f x f x f x f x

dx dx

d f d
f x f

dx dx

 
    

 

  

   

  1) ( ) : the n  derivative of ( ).thx f x  

 

Let’s take a look at some examples of higher order derivatives. 
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 (c) Similarly, on can show that  

 
 

Example:   Find the second derivative for the following. 

 ttaytax 0,sin,cos  

Solution:  Using the derivative rule for parametric functions, we get  

                 t
ta

ta

dt

dx

dt

dy

dx

dy
cot

sin

cos
/ 


  

               

tec
ata

tec

dt

dx

dt

dy

dt

d

dx

yd 3
2

2

2

cos
1

sin

cos
/ 











  

 

 

Example:   Find the second derivative for the following function 

, where k is constantkty e  

 

Solution:  Using the derivatives rule for the exponential function, one can show 

that  
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2

3

( )

,

,

,

kx

kx

kx

kx

n n kx

y e

y ke

y k e

y k e

y k e



 

 

 

 

 

 

Example:   Find the second derivative for the following function  ( ) sinf x ax  

 

Solution:  Using the derivatives rule for the trig function, we get

 

2 2

3 3

( )

( ) sin

( ) cos sin( )
2

( ) cos( ) sin( 2 )
2 2

( ) cos( ) sin( 3 )
2 2

( ) sin( )
2

n n

f x ax

f x a ax a ax

f x a ax a ax

f x a ax a ax

f x a ax n



 

 





   

    

    

 

 

 

Example:   Find the nth derivative for the following function  lny x
 and hence 

for ln , where a is constant.az x   

 

Solution:  Using the derivatives rule for the trig function, we get
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2

2

3 3

(4) 3

4 4

1

ln ,

1

1

2 2!
( 1)

2 3 3!
( 1)

( 1)!
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n n

n

y x

y
x

y
x

y
x x

y
x x

n
y

x





  

  

    


    


  

 

Using the properties of logarithm function, we have  

  ( ) 1

ln ln

( 1)!
[ln ] ( 1)

a

n n n

n

z x a x

n
z a x a

x



 


     

 

PRACTICES 

 

(1) Find the first derivative for the following functions: 




































x

x
yk

x

x
yj

xyieyh

xyfxye

xydxyc

xxyb
x

x
ya

x

sin1

cos
tan)

1

2
sin)

)(cotcos))

)ln(sin))cot(ln)

)5ln(sinln)2)

)5sin2()
2

2
)

1

2

1

1sin

6

21

 

 (2) Find the first derivative for the following parametric functions: 
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2

2

)1(
,)1

t

t
ytx


  

 
n

n

t
ty

t
tx

1
,

1
)2   

  3sinsin3,3coscos3)3  yx  

 

(3) Find the second derivative for the following  parametric functions: 

uuyuux  33 ,)1  

taytax 33 sin,cos)2   

 tttytttx cossin,cossin)3   

 

(4) Find the first derivative for the following implicit functions: 
3/23/23/2) ayxi   

 
yx

exyii 1)  

 13)ln() 32  yxyxiii  

 xyyxiv 11 tantan)    

 

(5)If   )cos(ln)sin(ln xxy   show that 02  yyxyx  

 

(6)If   xxy 2sin42cos3   prove that  yy 4  

 

(7)Find the nth derivative for the following functions:   

          
) sin 2a y x                        

1
)

2 5
b y

x



     ( ) cosc y ax  

(8)Let 
x

xy
1

sin .  Find  y   and show that  04  yyx  

 

 

 


